Почему кружковая математика гораздо интереснее школьной (1)
Кружковая математика, как вся математика, учит рассуждать, только она это делает другим способом — не через объяснение теории, а через усилия, которые прикладывают сами школьники, ещё ничего не зная. Чтобы решить кружковую задачу, не нужно ничего знать, достаточно здравого смысла, немного логики и простейших навыков счёта. Задачи кружковой математики решают даже двоечники. И делают это лучше, чем отличники, которые привыкли всё делать строго по образцу.
Например, классическая задача математика Давида Гильберта, который ещё в конце XIX века говорил: кто её решит без вычислений, тот прирожденный математик.
Есть два одинаковых стакана — стакан кофе и стакан молока. Объём кофе равен объему молока. Из стакана молока зачерпнули чайную ложку, перелили в кофе и небрежно перемешали. Потом из полученной смеси зачерпнули ложку и перелили в молоко обратно. Чего теперь больше: молока в стакане с кофе или кофе в стакане с молоком? Сложность в том, что мы не знаем, как перемешали, как зачерпнули — жидкость после первого переливания явно не стала однородной, молоко не успело равномерно распределиться.

Эта задача учит разбирать крайние случаи. И в ней как раз важен элемент неопределённости. В школьных задачах, как правило, всё ясно. Два путника шли навстречу друг другу. Что-то из расстояния и скорости известно, что-то нет и надо найти неизвестное. Здесь надо ответить на вопрос, когда у тебя есть неполная информация. Мы не знаем, сколько при втором переливании было кофе, а сколько молока. Вдруг мы перелили обратно всю ложку молока, не успев её размешать? Тогда ответ очевиден: в кофе нет молока, а в молоке нет кофе. А второй крайний случай: мы перелили молоко, а зачерпнули кофе. В обоих случаях ответ один — поровну. И это должно навести на мысль, что и во всех остальных случаях, не крайних, ответ будет один — поровну. Это и есть правильный ответ.
Сначала многим это не кажется очевидным. Тут важно, что общий объём до и после — всегда один и тот же. В финале представим, что и слева и справа есть и молоко, и кофе. По объёму они занимают одинаково. И уровни жидкости у них одинаковы. То есть в первом стакане молоко плюс кофе — по объёму весь стакан. И во втором стакане кофе плюс молоко — по объёму такой же стакан. Кружковая математика очень интересная и правда доставляет детям радость.
Репетитор по математике.
Краснообск
Например, классическая задача математика Давида Гильберта, который ещё в конце XIX века говорил: кто её решит без вычислений, тот прирожденный математик.
Есть два одинаковых стакана — стакан кофе и стакан молока. Объём кофе равен объему молока. Из стакана молока зачерпнули чайную ложку, перелили в кофе и небрежно перемешали. Потом из полученной смеси зачерпнули ложку и перелили в молоко обратно. Чего теперь больше: молока в стакане с кофе или кофе в стакане с молоком? Сложность в том, что мы не знаем, как перемешали, как зачерпнули — жидкость после первого переливания явно не стала однородной, молоко не успело равномерно распределиться.
Эта задача учит разбирать крайние случаи. И в ней как раз важен элемент неопределённости. В школьных задачах, как правило, всё ясно. Два путника шли навстречу друг другу. Что-то из расстояния и скорости известно, что-то нет и надо найти неизвестное. Здесь надо ответить на вопрос, когда у тебя есть неполная информация. Мы не знаем, сколько при втором переливании было кофе, а сколько молока. Вдруг мы перелили обратно всю ложку молока, не успев её размешать? Тогда ответ очевиден: в кофе нет молока, а в молоке нет кофе. А второй крайний случай: мы перелили молоко, а зачерпнули кофе. В обоих случаях ответ один — поровну. И это должно навести на мысль, что и во всех остальных случаях, не крайних, ответ будет один — поровну. Это и есть правильный ответ.
Сначала многим это не кажется очевидным. Тут важно, что общий объём до и после — всегда один и тот же. В финале представим, что и слева и справа есть и молоко, и кофе. По объёму они занимают одинаково. И уровни жидкости у них одинаковы. То есть в первом стакане молоко плюс кофе — по объёму весь стакан. И во втором стакане кофе плюс молоко — по объёму такой же стакан. Кружковая математика очень интересная и правда доставляет детям радость.
Репетитор по математике.
Краснообск